
Shell Tools | 109

Shell Tools
awk, sed, and egrep are a related set of Unix shell tools for
text processing. awk uses a DFA match engine, egrep
switches between a DFA and NFA match engine, depending
on which features are being used, and sed uses an NFA
engine. For an explanation of the rules behind these engines,
see “Introduction to Regexes and Pattern Matching.”

This reference covers GNU egrep 2.4.2, a program for search-
ing lines of text; GNU sed 3.02, a tool for scripting editing
commands; and GNU awk 3.1, a programming language for
text processing.

Supported Metacharacters
awk, egrep, and sed support the metacharacters and metase-
quences listed in Table 61 through Table 65. For expanded
definitions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 61. Shell character representations

Sequence Meaning Tool

\a Alert (bell). awk, sed

\b Backspace; supported only
in character class.

awk

\f Form feed. awk, sed

\n Newline (line feed). awk, sed

\r Carriage return. awk, sed

\t Horizontal tab. awk, sed

\v Vertical tab. awk, sed

\ooctal A character specified by a
one-, two-, or three-digit
octal code.

sed

110 | Regular Expression Pocket Reference

\octal A character specified by a
one-, two-, or three-digit
octal code.

awk

\xhex A character specified by a
two-digit hexadecimal
code.

awk, sed

\ddecimal A character specified by a
one, two, or three decimal
code.

awk, sed

\cchar A named control character
(e.g., \cC is Control-C).

awk, sed

\b Backspace. awk

\metacharacter Escape the metacharacter,
so that it literally
represents itself.

awk, sed, egrep

Table 62. Shell character classes and class-like
constructs

Class Meaning Tool

[...] Matches any single
character listed, or
contained within a listed
range.

awk, sed, egrep

[^...] Matches any single
character that is not listed,
or contained within a
listed range.

awk, sed, egrep

. Matches any single
character, except newline.

awk, sed, egrep

\w Matches an ASCII word
character, [a-zA-
Z0-9_].

egrep, sed

Table 61. Shell character representations (continued)

Sequence Meaning Tool

Shell Tools | 111

\W Matches a character that is
not an ASCII word
character, [^a-zA-Z0-
9_].

egrep, sed

[:prop:] Matches any character in
the POSIX character class.

awk, sed

[^[:prop:]] Matches any character not
in the POSIX character
class.

awk, sed

Table 63. Shell anchors and other zero-width testshell tools

Sequence Meaning Tool

^ Matches only start of
string, even if newlines are
embedded.

awk, sed, egrep

$ Matches only end of search
string, even if newlines are
embedded.

awk, sed, egrep

\< Matches beginning of
word boundary.

egrep

\> Matches end of word
boundary.

egrep

Table 64. Shell comments and mode modifiers

Modifier Meaning Tool

flag: i or I Case-insensitive matching
for ASCII characters.

sed

command-line option: -i Case-insensitive matching
for ASCII characters.

egrep

set IGNORECASE to
non-zero

Case-insensitive matching
for Unicode characters.

awk

Table 62. Shell character classes and class-like
constructs (continued)

Class Meaning Tool

112 | Regular Expression Pocket Reference

egrep
egrep [options] pattern files

egrep searches files for occurrences of pattern, and prints out
each matching line.

Example
$ echo 'Spiderman Menaces City!' > dailybugle.txt
$ egrep -i 'spider[-]?man' dailybugle.txt
Spiderman Menaces City!

sed
sed '[address1][,address2]s/pattern/replacement/[flags]' files

sed -f script files

By default, sed applies the substitution to every line in files. Each
address can be either a line number, or a regular expression
pattern. A supplied regular expression must be defined within the
forward slash delimiters (/.../).

Table 65. Shell grouping, capturing, conditional, and control

Sequence Meaning Tool

(PATTERN) Grouping. awk

\(PATTERN\) Group and capture
submatches, filling \1,
\2, . . . ,\9.

sed

\n Contains the nth earlier
submatch.

sed

...|... Alternation; match one or
the other.

egrep, awk, sed

Greedy quantifiers

* Match 0 or more times. awk, sed, egrep

+ Match 1 or more times. awk, sed, egrep

? Match 1 or 0 times. awk, sed, egrep

\{n\} Match exactly n times. sed, egrep

\{n,\} Match at least n times. sed, egrep

\{x,y\} Match at least x times, but
no more than y times.

sed, egrep

Shell Tools | 113

If address1 is supplied, substitution will begin on that line
number, or the first matching line, and continue until either the
end of the file, or the line indicated or matched by address2. Two
subsequences, & and \n, will be interpreted in replacement based
on the match results.

The sequence & is replaced with the text matched by pattern. The
sequence \n corresponds to a capture group (1...9) in the current
match. Here are the available flags:

n
Substitute the nth match in a line, where n is between 1 and 512.

g
Substitute all occurrences of pattern in a line.

p
Print lines with successful substitutions.

w file
Write lines with successful substitutions to file.

Example

Change date formats from MM/DD/YYYY to DD.MM.YYYY.

$ echo 12/30/1969' |
 sed 's!\([0-9][0-9]\)/\([0-9][0-9]\)/\([0-9]\{2,4\}\)!
\2.\1.\3!g'

awk
awk 'instructions' files

awk -f script files

The awk script contained in instructions or script should be a
series of /pattern/ {action} pairs. The action code is applied to
each line matched by pattern. awk also supplies several functions
for pattern matching.

Functions

match(text, pattern)
If pattern matches in text, return the position in text where
the match starts. A failed match returns zero. A successful
match also sets the variable RSTART to the position where the
match started, and the variable RLENGTH to the number of
characters in the match.

114 | Regular Expression Pocket Reference

gsub(pattern, replacement, text)
Substitute each match of pattern in text with replacement,
and return the number of substitutions. Defaults to $0 if text
is not supplied.

sub(pattern, replacement, text)
Substitute first match of pattern in text with replacement. A
successful substitution returns 1, and an unsuccessful substi-
tution returns 0. Defaults to $0 if text is not supplied.

Example

Create an awk file and then run it from the command line.

$ cat sub.awk
{
 gsub(/https?:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*/,
 "\&");

 print
}

$ echo "Check the web site, http://www.oreilly.com/
catalog/repr" | awk -f sub.awk

Other Resources
• sed and awk, by Dale Dougherty and Arnold Robbins

(O’Reilly), is an introduction and reference to both tools.

